
SOFIA's Choice:

Automating the Scheduling of Airborne Observations

Jeremy Frank

Caelum Research Corp.
NASA Ames Research Center

Mail Stop N269-1

Moffett Field, CA 94035-1000

1 Introduction

This paper describes the problem of scheduling observations for an airborne telescope. Given a set of

prioritized observations to choose from, and a wide range of complex constraints governing legitimate

choices and orderings, how caa we efficiently and effectively create a valid flight plan which supports

high priority observations?

This problem is quite different from scheduling problems which are routinely solved automatically

in industry. For instance, the problem requires making choices which lead to other choices later, and

contains many interacting complex constraints over both discrete and continuous variables. Further-

more, new types of constraints may be added as the fundamental problem changes. As a result of

these features, this problem cannot be solved by traditional scheduling techniques. The problem re-

sembles other problems in NASA and industry, from observation scheduling for rovers and other science

instruments to vehicle routing

The remainder of the paper is organized as follows. In §2 we describe the observatory in order

to provide some background. In §3 we describe the problem of scheduling a single flight. In §4 we

compare flight planning and other scheduling problems and argue that traditional techniques are not

sufficient to solve this problem. We also mention similar complex scheduling problems which may

benefit from efforts to solve this problem. In §5 we describe an approach for solving this problem based

on research into a similar problem, that of scheduling observations for a space-borne probe. In §6 we

discuss extensions of the flight planning problem as well as other problems which are similar to flight

planning. In §7 we conclude aJld discuss future work.

2 SOFIA: The Observatory

The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne observatory and ground

support facility which will enable astronomers to perform infrared astronomy using an airborne plat-
form. The observatory consists of a 747-SP aircraft with a 2.5m telescope. The telescope has an

elevation range of 20-60 degrees, but only 2 degrees of horizontal freedom. The aircraft can fly with
one of several instruments on board, enabling a wide range of science observations in the infra-red

spectrum, between 0.3 to 1600 /J. SOFIA follows the Kuiper Airborne Observatory (KAO), which

performed airborne astronomical observations for 20 years. More details on SOFIA can be found in

[Bec97] and lED97].
The operational goals for SOFIA are to fly 140 flights per year (3-4 flights per week), for as much

as 8-9 hours at a time. These flights will be divided between Principal Investigators (PIs) and General

Investigators (GIs). PIs will propose observations which occupy an entire flight, and will be responsible
for their own observation and flight planning. GIs, on the other hand, will propose observations which
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requested by many different a.stronotners. These flights will b, +plamlcd arid I,erfi_rmed by SOFIA staff.

This operational breakdown means that SOFIA staff will be faced with choices regarding how to

plan flights ia sltpport of GI ol.,_ervations. Flight plans for the I{AO wrre synthesized by hand, with
the" aid of software which computed trajectories front observation requests. The scope of the flight

planning problem for supporting GI observations makes this approach to flight planning inadequate,

as it would require too many p_rson-hours to effectively schedule flights.

3 Planning for a Single Flight

In this paper, we advocate automating the process of flight planning in order to successfully meet

the challenges of scheduling GI observations. There has been considerable success in automating the

scheduling of jobs in a wide variety of industries with many different types of constraints. However,
these problems are typified by relatively simple, homogeneous constraints, and the successful approaches

depend on these simple representations.
The elementary problem for an airborne observatory like SOFIA is the Single Flight Planning

Problem (SFP). This problem consists of constructing a good flight plan for a single flight on a given

day. The problem input consists of the set of observations that have been requested, the constraints
peculiar to the flight environment, and the objective function. As we shall see, this problem is too

complex to be solved using traditional scheduling techniques.

3.1 The Observation Requests

An observation request consists of the name of the object to be observed, the amount of time requested,

the relative importance of the observation, and a set of constraints on the observation. For now, we
assume that the amount of time is fixed and also that it is strictly less than the maximum duration

of the flight. The importance or priority of the observation is a summary of several different factors.
Some observations axe naturally more interesting to the science community than others. However, due

to the limited duration of flights, it may be necessary to observe a target many times, and so it may

be more important to finish a sequence of observations on a target than to start a new observation.
The most complex part of an observation request are the constraints on the observation. Some of

these constraints are explicitly given by astronomers, while others are implicit, due to the nature of

airborne observing. We now turn our attention to these constraints.

3.1.1 Ordering Constraints

Some observations may have explicit constraints on the order in which they are performed. For example,

instruments may need to be calibrated by observing particular objects before the primary observation of

interest is performed. In addition, the telescope may need to be tuned at the beginning and periodically

during the flight by observing objects with particular characteristics. High-precision tuning may require
observing the same object at multiple elevations, for instance. These requirements impose ordering
constraints on the observations that must be obeyed 1

3.1.2 Astronomical Constraints

Some objects may only be visible from certain positions on the earth at certain times of day. Thus,

there may be an earliest start time and a latest end time for completing a given observation request.
Astronomers may also provide explicit constraints on particular observations so that the data is of

high quality. For example, the astronomer may require that the object be sufficiently far away from
the moon or the sun, or that airmass or atmospheric water vapor is below a certain threshold. These
constraints also dictate when a target may be observed. In particular, minimizing airmass requires

tWhile calibrations and setup operations are not strictly oboervations, for simplicity we represent them amsuch.



observingat a higher altitude_ and minimizing water vapor can be accomplished by observing at higher

altitudes or by observing further north [HB00].

3.1.3 Aircraft Constraints

SOFIA has complex constraints simply because it is an airborne observatory. Most objects appear to

move through the sky as time passes. Because the telescope has little horizontal flexibility, the aircraft
must fly a curved trajectory ill order to keep objects in view. The wind speed, aircraft speed, and time

and position an observation is started dictate the trajectory and final location of the aircraft at the end

of the observation. Object visibility windows are further constrained by the limits on the telescope's

angle of elevation. Even though an object may be visible from the ground, it may not be visible from
the aircraft, either because it is too low or too high for the telescope to view. An object may sometimes

have multiple windows of visibility during a single flight. For example, it may pass above and then

below the maximum telescope elevation, requiring a choice of when to observe.
The aircraft must normally return to the airport it took off from. Flight time is also limited by fuel,

requiring all observations to be done with enough time for the aircraft to return, from wherever it is, to

the airport. Finally, the aircraft's altitude is constrained by its weight, but the weight decreases over

time as fuel is consumed, so the aircraft can generally climb 2000 ft every two hours. These factors
can interact with constraints on airmass or water vapor to further limit the windows during which
observations can be made.
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Figure 1: Visibility of an object during March 18, 2000 from Moffett Field. Note that time is given in
Universal Time, and that sunset and sunrise are marked.

Many of these constraints are demonstrated in Figure 1. This figure shows visibility and heading
information for an object viewed from Motfett Field during March 18, 2000. The y axis shows the

heading the aircraft must fly to keep the object in view. The direction changes over time, indicating
that the aircraft must constantly turn to keep the object in view. The curves on the plot indicate

when the object is in view. No curve indicates the object is below the telescope's 20 degree minimum
elevation, while the dotted curve indicates the object is above the 60 degree maximum elevation. Notice

that the object passes below the minimum elevation and then returns to view then passes above the

maximum elevation and again returns to view. During any 9 hour period, there are at most two

windows of visibility for this object.



3.2 Flight Environment, Constraints

In this section we discuss cor_straints derive(t from the environment on the day of the flight. One

important example of such cot_straints are airborne warniug zones, commercial flight routes, and other
administrative restrictions on where tile aircraft can fly ". Some flight environments may have fewer

such restrictions; for example, if the aircraft flies out of Hawaii or New Zealand, there will be fewer

such restrictions than flights over Nevada. Bad weather may constrain observations as well. While

cloud cover is usually not an issue at the altitudes where observing is likely to occur, turbulence can

affect the performance of tile observations, and may increase observation time or have other effects on

flights. Wind speed and direction can also have an effect on a particular flight. The aircraft's ground
speed is directly affected by wind, and wind patterns change over time. Flight planners must take

these effects into account when doing planning.

3.3 The Objective Function

The final component of the SFP is the objective function, which is used to compare two candidate

fight plans. Within the confines of the single flight planning problem, the objective function can
range in complexity. A good flight contains as many high-priority observations as possible; hence a
good objective function might be to simply sum the priorities of the observations which are performed.

However, the aircraft might spend considerable time flying without observing, i.e. flying a dead leg.

Thus, the objective function may penalize dead legs explicitly. Astronomers may also prefer rather
than require that observations be done at various water vapor levels, that targets be observed when

they are far from the moon or other heavenly bodies, and so on. All of these preferences can then be

added to the objective function, resulting in a fairly complex measurement of the goodness of a flight

plan.

3.4 The Statement of tile Problem

With all the components in place, we can now state the SFP: given a set of observations to perform, a

date to perform them, a description of the environment on that date, and the objective function, select

a (possibly proper) subset of the observations, a start time for each observation, a takeoff time, and
specify any dead-legs. The resulting flight plan should maximize the objective function and must not

violate any of the constraints. Figure 2 shows an example of a flight plan.

4 The Complexity of Flight Planning

Many efficient scheduling techniques rely on special eneodings of problems in order to deliver good com-
putational results. These techniques work only for simple constraints, such as equality and inequality or

simple combinations of resource and precedence constraints. For example, many scheduling problems
can be posed as linear programming problems, which can be solved in polynomial time [Lue84]. Many

other examples of clever encodings and algorithms exploiting them can be found in a recent text on
scheduling techniques [Bru98]. While these techniques are very powerful, the problems they can solve

are limited, and a great deal of sophisticated modeling may be necessary to pose these problems in the
correct form.

As we have seen, any instance of the SFP is compo6ed of a large number of complex, heterogeneous
constraints over both continuous and discrete variables. Even relatively simple versions of the SFP are

quite complex, consisting of geometric constraints, precedence constraints, mutual exclusion constraints
and temporal constraints, all in the same problem. While it may be possible to encode parts of the

problem in order to take advantage of efficient algorithms, it is unlikely that we can find a good encoding .
which will serve for all instances of the problem. Furthermore, over the lifetime of the observatory, other .:_

constraints may be required to represent a flight planning problem. For example, new instruments may t_

_The KAO was not FAA certified, which meant that trans-national flights required extensive paperwork. SOFIA will
be FAA certified and will not have these restrictions.
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Figure 2: A flight plan. Ea(_ observation leg is marked with +s and labeled, while dead legs are
simple lines. Note that no restricted areas are indicated in this figure; this flight plan is likely to cross
restricted areas over Nevada.

have new constraints, and newly discovered objects may impose new constraints as well. The addition

of these constraints may invalidate any overly specialized representations and algorithms.

The SFP presents another challenge in the form of the size of the representation. In particular, it
is not known beforehand how many observations will be performed on any given flight, nor is it known

how many dead-legs will be required. Each choice made during the planning and scheduling of the

flight affects other choices later; for instance, choosing one set of observations makes it impossible to
choose others. Traditional scheduling techniques require all of these choices to be represented, along
with constraints which are triggered once the choice is made. Encoding all of this information results

in large representations; for an extreme example, we refer the reader to [KS96]. The problem only

becomes worse as the scope of the problem grows; thus, while it may be possible to encode a single

SFP, it may not be possible to encode an extended SFP because the encoding will not fit into the

computer's memory.

5 Automatic Generation of Flight Plans

In thissection we describe a planning and schedulingparadigm which meets the requirements for

solvingthe SFP. This paradigm has been successfullyimplemented inthe New Remote Agent Planner

[JMMR99], which is designed for use in space applications.We firstdiscussDynamic Constraint

SatisfactionProblems, a generalrepresentationforproblems likethe SFP. We then describeprocedural

constraints,which generalizeconstraintsfrom mathematical relationstopowerful,miniatureprograms.

We then describean algorithmwhich uses theseproceduresto solveDCSPs.

5.1 Representation

Constraint Satisfaction Problems or CSPs are a general representation which can be used to represent

many problems, including scheduling problems. A CSP consists of a set of variables, each of which has
an associated domain of legal values it can take on in a solution. In addition to variables, the CSP
contains a set of constraints, which restrict the legal assignments to sets of values. These constraints can

be extensional, in which all the legal assignments axe listed, or intentional, in which legal assignments

are encoded as a simple mathematical relationship. A constraint is satisfied if its variables are assigned



values which are permitted by tile constraint. A solution to a CSP is an assignmont of each variable
to a single value in its domain such that all the constraints are satisfied.

The notion of a constraint is very general, and many real-world problems can be represented very
naturally with simple constraints. For example, [BF98] and [Nui94] both discuss various issues in

representing scheduling problems as CSPs. However, sometimes representations of problems using

simple constraints can become large and unwieldy. For instance, an enormous amount of space is
required to explicitly represent all of the possible time-location pairs when an object is visible. It is often
more efficient to represent a ccnstraint with a mathematical relation such as <. Procedural constraints

[J96] generalizes this concept by formalizing the notion of a procedure which enforces a relation among

the variables of a constraint. A special form of procedural constraint called an elimination procedure is

permitted to get rid of any element of a domain that is provably not part of any solution to the problem,
given the information currently at hand. For example, an elimination procedure might eliminate all
observations as candidates for r,he next observation on a flight because the aircraft is almost out of fuel.

Procedures also are used to formalize the concept of decision variables. If a procedure is able to assign
values to a set of variables V - D given that all the variables in D have been assigned, then there is no

reason to search the values of variables in V - D. The variables in D are called the decision variables,
since those are the only variables over which search is performed. Continuous variables can be handled

by making sure they are not in the set of decision variables [JF99].
CSPs are capable of representing a large number of interesting problems. However, CSPs contain

no mechanism to express a preference between two solutions that satisfy all of the constraints. A
Constraint Optimization Problem or COP is a CSP which includes a mapping from a solution to the

real numbers. This mapping encodes the preferences between solutions which satisfy all the constraints.

It should be clear from the discussion of the SFP above that we can pose the SFP as a COP.

As mentioned above, representing the SFP may be unwieldy due to the large number of constraints

required to encode the conditional effects of all of the choices. An alternative representation is the
Dynamic Constraint Satisfaction Problem or DCSP. A DCSP is a sequence of CSPs, in which each
CSP is a modification of the previous CSP in the sequence. A CSP C is said to be a relaxation of

a CSP D if C has fewer constraints, fewer variables or more combinations of assignments permitted
in its constraints. A CSP C is said to be a restriction of a CSP D if C has more constraints, more
variables or fewer combinations of assignments permitted in it's constraints. These ideas are formalized

in [JF99]. DCSPs provide a way to formally characterize how a problem changes over time, and require

less space since the impact of choices need not be encoded in a single representation of the problem.

5.2 Representing the SFP as a DCSP

In this section we describe how to represent the SFP as a DCSP. Let us assume that the problem

consists of a set of observation requests, and our task is to construct a flight for a particular day such
that the sum of the priorities of the observations performed exceeds a certain threshold. The durations

of the observations are fixed, but we will permit dead legs in this problem. For simplicity, we ignore
restricted zone constraints and artificially restrict the bearings of dead legs to the 4 cardinal directions,
and restrict dead leg flight duration to 5, 10, 15 or 20 minutes.

The variables for the problem will represent aspects of each flight leg. Every leg will have a duration
variable, and variables for the initial and final times and locations of the leg. Every observation leg

also has an object and a priority variable, while every dead leg has a bearing variable. The constraints
include those mentioned in §3, such as those imposed by astronomers, and by the problem instance
itself. For instance, the constraint on the final ground location for an observation leg relates the initial
and final locations and times, the duration of the observation, and the celestial coordinates of the

object being observed. The constraint on the flight plan quality states that the sum of the priority

variables, however many there are, must exceed a constant. Similarly, the constraint on the flight plan
duration says that the sum of the leg durations, however many there are, must not exceed a constant.

We also require that no two consecutive legs can be dead legs.

At any given instant in the construction of the schedule, we have a CSP consisting of the variables
for the current set of legs and the constraints on those variables. However, it is not known beforehand



how manylegsa particular flight will require.Wedo know,however,that the flight must consistof

at least 2 legs: one to take off from the airport and one to land-Thus, the flight will initially consist

of two legs; the first will begin at the airport, the second will end at the airport. We must represent

steps taken in flight planning which add new flight legs to the flight plan. This is modeled using the
following variables and constraints. Each leg has associated with it two additional variables: Leg-x

and Leg-after-x. There are three legal values for these variables: dead-leg, obs-leg, home-leg. If variable

Leg-x is assigned the value home-leg, then the leg is connected to the leg which takes the aircraft home;
otherwise, a new leg of the appropriate type is instantiated. We also add constraints requiring that

the Leg-x variable can't be dead-leg or home-leg for observation legs, and that Leg-after-x - Leg-x+1.

Since consecutive dead legs are prohibited, we add a constraint which prohibits both Leg-x+1 and

Leg-after-x+1 from being dead-leg or home-leg.

U Consecutive

dead legs
prohibited

Equals

Duration Duration

Flight
time < 9

hours

Consecutive
dead legs
prohibited

I

Figure 3: New variables and constraints of the DCSP after adding a new flight leg.

Figure 3 shows the evolution of a portion of the DCSP when a new leg is added. The variables

for leg 5 have all been assigned values which satisfy the various constraints between them. When the

variable Leg-After 5 is assigned the value obs-leg, this is a signal that the variables for a new leg, in
this case leg 6, must be added to the problem; these variables are Leg 6, Duration 6 and Leg-After

6, among others. In addition, the new constraints are inserted, among then that Leg-after-5 = Leg-6,
and the constraint enforcing Leg-after-6 can't be dead-leg or home-leg. Notice that the Flight time <

9 hours constraint actually must be modified, because this constraint acts on the duration of the new

leg as well as the previously added legs.
Finally, we briefly discuss how procedural constraints play a role in representing this problem.

Suppose that we have two high priority observations, one constrained to occur at the beginning of the

flight and one at the end of the flight. After specifying these two flight legs, we are left with a situation

in which the aircraft must fly in roughly the same direction in order to connect these two legs together
and create a legal flight plan. An elimination procedure could check the remaining observations and

eliminate those that require the aircraft to fly the wrong direction. Representing this type of implied

constraint efficiently is impossible using a simple representation.
As mentioned previously, procedures can also be used to handle continuous variables by making

certain they are not in the set of decision variables. For example, the end time and end location of

observation legs are determined fully by the start time, start location and object being observed. Thus,
there is no need to search over possible assignments to these continuous variables.



5.3 Solving CSPs

We now turn to metho(lologie,_ designed to solve DCSPs. Wc begin with solving CSPs, then show how

the basic algorithm call solve DCSPs as well.
gr_cktrackin9 search coust_ucts a solution to a CSP by selecting a variable from tile remaining

un_msigned variables in a probImn, then trying each possible value irl turn. If at any point a constraint

violatiou is detected, the procedure returns to the previous variable binding, and tries another value.
If all the values of a variable are tried without success, then the procedure also returns to the previous
variable and tries another vak_e.

This conceptually simple a:_gorithm is guaranteed to solve a CSP or demonstrate that no solution is

possible. The worst-case running time for this procedure is the product of the sizes of the domains of
all the variables, which is exponential in the number of variables. Consequently, backtracking is only

feasible for CSPs with discrete domains. Backtracking can be easily modified to solve COPs by saving

the value of the best solution found, and searching over all solutions instead of halting after finding

the first solution satisfying the constraints. In essence, this is like imposing a new bound on solution

quality each time the old bound is improved upon.
The performance ofthisalgorithmdepends dramaticallyon functionswhich selectthe next variable

to choose,selectthe orderto tryvalues,perform fastinferenceto eliminatevaluesfrom the domains of

unbound variables,and decidewhich variablebindingdecisionisresponsiblefora constraintviolation.

For instance,in the SFP, there isoften a choiceconcerningwhich observationto make for a given

observationleg.Since the goal isto exceed a bound on the priority,a good choicemight be to select

the remaining observationwith the highestpriorityto trynext.However, ifthisobservationistoo long

or takes the aircraftinthe wrong direction,otherobservationswillnot be possibleand a poor quality

flightplan willresult.Consequently,modifying thischoiceby checkingthe directionthe aircraftmust

flymay leadto betterflightplans inlesstime.Itshouldalsobe clearthatusingproceduralconstraints

to eliminatebad choicesforvariablescan save time,sincethe algorithmdoes not need to guess these

values. These modificationsare criticalto good algorithmperformance; for resultson traditional

schedulingproblems,see [BF98] and [Nui94].

Itshould be clearfrom the discussionofthe constraintsin§3 thatflightplannersmust choose from

among severaltradeoffswhen schedulingflights.For example, an obvious tradeoffconcerns whether

to try a high-priorityobservationfirst,or to try an observationof lowerprioritywhich may be easier

to schedule. Another tradeoffconcerns when to schedulea particularobservation.Ifthe observation

isconstrainedby a minimum water vapor threshold,forinstance,then thismay be satisfiedby flying

higher or furthernorth [HB00]. However, theseboth requiremaking observationslaterin the flight;
care must be taken to ensure that the aircraftcan stillreturnhome. "rradeoffssuch as these drive

the constructionof both variableand value orderingheuristics,which are necessaryto ensure good

algorithm performance.

There are many other algorithms which can be used to solveCSPs. However, we only discuss

backtracking algorithmsin the interestsofspace considerations.

5.4 Solving DCSPs

Itrequiresvery littleeffortto modify the standard backtrackingalgorithmtosolveDCSPs ratherthan

CSPs. While standard backtrackingguaranteesthat the setof variablesand constraintsisconstant

during the solvingprocess,a solverfora DCSP must contend with the possibilitythat new variables

and constraintsare generated during the problem solvingprocess. In Figure 4 we see that before

checking for constraintviolations,we must generate the new CSP, P' from P. For instance,ifwe

decided to add a new flightleg,we would have to add the variablesand constraintspertinentto this

leg to the CSP. In order to guarantee that thisprocessterminates,we must be assured that we only

add a finitenumber of variablesto the problem instancein the worst case.



procedure CompleteSearchDCSP(P)
generate next CSP, P'
if a constraint is violated return fail

if problem solved return success
select an uninstantiated variable V

for all values of this variable v E dora(V)
if CompleteSearch(P' U V := v) == success

return success
end for

replace P' with P if necessary
return fail

end

Figure 4: Complete search.

6 Related Problems

As mentioned in the introduction, SOFIA supports many different instruments. Unfortunately, chang-

ing instruments is a lengthy job, which takes several hours to complete. Instrument changes will be

minimized due to the overhead required before installation, the time required to remove an instrument
and install another one, and the setup time for the new instrument on the airplane. This leads to an

extended flight planning problem: rather than just planning a single flight, a series of flights with the

same instrument must be planned. This problem includes constraints on which days the aircraft can
fly; the aircraft will not fly on holidays, routine maintenance must be performed, and astronomers may

not be available on some day.s. Additional no-fly constraints may be imposed by other observatory

operations, such as PI flights or special events such as comet impacts or supernova explosions.

The techniques we propose in subsequent sections can be used to address the extended problem as
well as the more limited SFP. However, we focus in the sequel on the SFP for simplicity's sake.

The SFP is similar to other problems important for both NASA and industry. For example,

the Vehicle Routing Problem (VRP) is the problem of delivering packages to various destinations
in an urban area. Typically, the problem features many trucks, with different capacities and fuel
constraints, and many jobs with different time windows, ordering constraints and priorities [KPS99].

This problem does not have the complex geometric constraints that the SFP features, but shares many

other similarities. Ordering constraints, package size, fuel constraints, truck capacity and distances
all interact to make for a complex scheduling problem. Scheduling operations for planetary rovers

[BGSW99] and inter-planetary vehicles [JMMR99] features the sequencing of science observations and

their enabling activities such as sample acquisition, as well as operations to aid in navigation as well as
re-charging operations. Visual spectrum science observations have constraints similar to astronomical

observations; in the rover domain, for example, there must be su/ficient light available. Furthermore,
the total number of operations must be within the available power budget of the vehicle. Finally, path

planning in the rover domain and astronomical navigation feature complex geometric constraints which

may require simulation.

7 Conclusions

The flight planning problem motivated by the SOFIA GI program is a complex one, with many het-
erogeneous constraints over a mixture of continuous and discrete variables. The resulting problem is

further complicated by the fact that the problem includes an uncertain number of steps and other con-
ditional constraints that can be very expensive to encode in a single problem instance. These factors

lead us to the conclusion that traditional scheduling techniques which solve simple scheduling problems
are, by themselves, likely to be inadequate. We instead advocate representing the problem as a DCSP



employing procedural constrai:xts. This problem can then be solved by a comple.te semch algorithm

using the procedural constraints to efficiently eliminate possible assignments. Furthermore, this prob-

lem is similar to other problems which are important for NASA and industry to solve. Therefore, it

is worthwhile to address these problems and gain experience in solving them; only by doing so can we

ensure that SOFIA's choice will be made correctly.
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